蔬菜种子技术泄露的全周期风险因素识别与静态贝叶斯网络建模
DOI:
https://doi.org/10.6914/tpss.070203Keywords:
蔬菜种子技术泄露, 故障树分析, 贝叶斯网络, 模糊集理论, 风险评估Abstract
蔬菜种子技术泄露风险对我国种业安全与农业可持续发展构成严峻挑战。本研究围绕内部泄密、生物窃取等5类核心风险及24项基本事件,构建故障树模型,解析风险事件的逻辑因果关系,引入模糊集理论量化专家语义评价以确定基本事件先验概率,并将故障树映射为贝叶斯网络,建立静态风险评估模型。通过多维致因分析与概率推理,揭示了风险传导路径与关键致因节点,为蔬菜种子技术泄露风险的主动防控与决策优化提供理论支撑。
Downloads
Published
2025-03-31
Issue
Section
Articles
License
Copyright (c) 2025 THE AUTHOR(s) & Creative Publishing Co., Limited

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
蔬菜种子技术泄露的全周期风险因素识别与静态贝叶斯网络建模. (2025). Theory and Practice of Social Science, 7(2), 30-40. https://doi.org/10.6914/tpss.070203